Perhaps The Most Awesome Thanks For Saying Thanks Ever?

So I filled out (not up) a survey I got via e-mail from PAL.

My recent flight from Manila was pretty uneventful except that for breakfast by the time the flight attendant pushed the cart to my row, they were out of corned beef. I was already dreaming of the In-N-Out Double Double awaiting me, so it was no big deal.

I told the flight attendant that its ok, I’ll pass on the fish and just wait a few hours until landing. But she went and found me an extra corned beef anyway. Nothing special, but she didnt have to do that and she did. Pamela went above and beyond and it stuck in my mind well enough, that when I got the email survey from PAL. I made note of it.

And then I got back perhaps the nicest, warmest, most sincere thanks for filling out the survey I think I have ever seen. It might be a canned message, but is sure seems like it comes from a genuine need to keep the customer happy.

I wish more companies valued their customers the way PAL just made me feel valued.

10592010_10152674958362425_1982237172_n

“Dear Mr. Meyer,

Thank you for sharing your recent experience with us.

We would like to express our utmost gratitude for your appreciation of our service. Surely, you will agree that for us, it may just all be a part of the day’s work, but the good impression you have elicited from this experience will definitely last for more than just a day. Your kind words serve as an inspiration for us to consistently provide you, our guest, with excellent service.

Mr. Meyer, we wish to reiterate our heartfelt gratitude to you for your valued support and patronage of Philippine Airlines. We remain committed to provide only the best in passenger care and it is our fervent hope to be of service to you again, onboard our flights, soon.

Sincerely,

Customer Relations Office

Philippine Airlines”

It made my day.

Give Me A Young, Hungry And Curious Person And I Will Teach Them How To…

Businesses want analysts who can dig into a question and not only get to the root cause but also come up with multiple solutions.. this is not something that generally is taught in schools.

Unleashing a young, hungry and curious mind on complex business challenges is not generally considered, as most companies tend to assign newbies to remedial task and assign tire, narrow thinking, veterans to handle the big stuff.

Companies that see past these challenges and can select talent, empower them and turn them lose with cutting edge analytics technology are the ones succeeding.

DMAI_ERINSHELLMAN_shemac101_092015 copy

Dont give me an excuse, give me a solution. Don’t come with just a problem, also come with a suggestion on how to fix it.

How many people do you have in your business that can do that?

All The Tools And All of The Talent but none of the Technique… Where Good Analytics Intentions Go Bad

I have seen so many examples of this. A majority of companies throw money at analytics in the form of buying new technology, but don’t spend a fraction as much on the people who need to make the technology work.

A good analyst using Excel is much more powerful then a mediocre analyst using a cutting edge BI tool. Without the innate curiosity, knowledge of the business and ability to communicate discoveries that come with a good analyst, your analytics plans will fall short no matter what the sales reps from the analytics companies promise you.

Now we have the 2016 Presidential Election results to analyze. Most predictive models had Clinton winning. Most of the polls had Clinton winning.

So where did the analytics go wrong? Well, its definitely not the technology. And I don’t think it was the talent.

In the coming days, I am pretty sure we will find it was the technique.

It was not getting deep enough data.

It was looking at the data and seeing what you expected to see.

Curiosity was lost.

Finding new perspectives to make sure we have the right data next time.

Hillary Clinton’s campaign will be a case study in where good analytics where not good enough.

Analytics Culture – The key to using analytics in a business is like a secret sauce. It is a unique combination of analytics talent, technology and technique that are brought together to enrich and empower an organization. A successful analytics culture is not easy to create, but DMAIPH can show you how. Contact DMAIPH now at analytics@dmaiph.com or connect with me directly so we can build a strategic plan to turn your company into analytics driven success story.

 

Probing For Curiosity

Finding a good assessment to measure curiosity is something I am always looking for. Lots of ways to try and find it, but a true penchent towards curiosity can still be elusive during the hiring process.

Lot’s of probing questions like, asking candidates to explain how they solve problems and what they do when they come across something unexpected is a good start.

Taking personality tests like the MBTI and its ilk is another way.

Giving them a quick research assignment with fairly vague directions and open ended results can also help too.

Reading for fun is also another good indicator.

IMG_1310

Whatever it is you do, make sure its something you are probing for.

Of all the data points in HR & Recruitment Analytics, that is the one I care most about.

HR & Recruitment Analytics – The recruitment and retention of top talent is the biggest challenge facing just about every organization. DMAIPH is a leading expert in empowering HR & Recruitment teams with analytics techniques to optimize their talent acquisition and management processes. Contact DMAIPH now at analytics@dmaiph.com or connect with me directly to learn how to get more analytics in your HR & Recruitment process so you can rise to the top in the ever quickening demand for top talent.

When What Is New Is Actually Old

I saw this quote and thought it was worth sharing… often I remind people that most problems have already been solved by someone else. One of the keys to being a good analyst is having a network that you can go to when you are stuck and ask around to see if anyone else has already figured it out.

Print

DMAI has been blessed with a very successful year so far in 2015 and is starting to look towards 2016 planning. Let’s see if there is some more opportunities out there for us to teach some people to rediscover things again using analytics!

11 Days Of Analytics Training in Just Over 3 Weeks

By the end of next week, I am on target to have completed at least 4 hours of analytics training in 11 of the past 25 days.

This tells me two things… the need for analytics training here in the Philippines has never been greater and I need to move finding an in-house business analyst who can also do training higher up my priority list.

Ideally, someone with some business dashboard building experience, knows the BPO industry and is passionate about teaching other people how to be good analysts.

Qualified candidates are in short supply, but I know there are some out there who will make a great addition to the DMAI Science Team we are now building.

If you or anyone you know is interested, please connect with me on LinkedIn or send me an email @ danmeyer@dmaiph.com

There is an ever increasing analytics pie out there and the time is ripe to not just be a good analyst, but get into helping create a whole wave of analysts.

Be a creator, not just a user!

DMAI_GrowMoreDMAI_shemac081815 copy

Another Chance To Start Over

http://sethgodin.typepad.com/seths_blog/2015/09/another-chance-to-start-over.html

Sharing Seth’s blog… another well timed post that seems to be directed at my life specifically.

Another chance to start over

Every day that you begin with a colleague, a partner, a customer… it might as well be a fresh start.

There’s little upside in two strikes, a grudge, probation. When we give people the benefit of the doubt, we have a chance to engage with their best selves.

If someone can’t earn that fresh start, by all means, make the choice not to work with them again. Ask your customer to move on, recommend someone who might serve them better.

But for everyone else, today is another chance to be great.

11393144_10153432064897425_1344991735431472090_n

Fundamentals of Business Analytics > Taking A Big Step Towards Implementation

Working on a training power point for a week long Fundamentals of Business Analytics class I will be teaching in two weeks.

A full week of training on business analytics is a new challenge and will serve as a precursor to a full blown semester long class. The audience here is made up of faculty who will be teaching classes as prescribed by the 2013 CHED Memo on infusing business analytics into the business administration curriculum.

I will break the class down into 5 section, each covering some of the course and learning objectives outlined in the memo.Here are the topics:

Day One: Introduction to Business Analytics

Day Two: Big Data & Data Warehousing

Day Three: The Three Type of Analytics   (Descriptive, Predictive & Prescriptive)

Day Four: Business Intelligence, Data   Visualization & Business Dashboards

Day Five: Analytics & Decision-Making

Whether you dream of being an analyst, aspire to be a better analyst or hope to surround yourself with people skilled in analytics, you have to strive to be different.

You have to look at data as having the answers and analytics as the key to determining which answers are the ones you need.

Working from this starting point, we will build a knowledge base that will give us a solid grasp of the Fundamentals of Business Analytics (FBA).

That is the core message I will inpart on the audience as no amount of skills based training along will make a successful analyst. You have to have a context to work within and that will be the biggest challenge of all, as the students will not have any experience at all.

Looking forward to seeing how this goes… its a laboratory for testing out how to train the trainer to train analysts out of a population of 3rd year college students.

420

Infusing HR Analytics into Organizational Behavior and Human Resource Management Classes

One of the things I have been working on is helping a top school here in the Philippines develop a strategy to infuse more HR Analytics into their Organizational Behavior and Human Resource Management Classes.

This effort is a precursor to a class specifically on HR Analytics, which is to the best of my knowledge, the first ever here in the Philippines.

So as I put more thought into the syllabus of each class, it occurred to me that a good way to approach analytics is to introduce it slowly over the length of the 3 classes, which follow in a natural progression.

Starting with the OB class, we can focus on how to identify data in an organization that will be useful to a HR team to measure things over time. To help really get at causality of human behavior on a wide scale, you need to have the data to understand context.

In the HR Management class, we will spend more time working on the inventory part of analytics, which is to bring the data into an analysis and reporting structure that helps us discover patterns and trends based on that data.

Then the HR Analytics class, we will then proceed on how to integrate the data and the analysis into tool like a business dashboard.

At a high level, the students will gain an appreciation for the wealth of data HR can access in an organization and how the analysis and reporting of this data can lead to more data-driven decision making.

Its great to have an understanding of why people leave a job, and to have good reporting on attrition patterns, but you also need to have the ability to enable strategic action based on data and not just observation or simple metrics.

That is what our students will be able to do that will separate them from other Psychology grads entering the workforce. They will be ready day one to be HR Analysts who can bring a much needed data centric skills set to a very people driven discipline.

If you are a school administrator or professor and need to get more analytics in your course work so your students are better prepared for the analytics centric jobs, connect with me. I can show you how. I even have a textbook you can use. My new book Putting Your Data to Work is ideal for the nascent analytics learner.

9b9b0d_9e1b0bda82a944ed9d8845fb26bc2b7b-png_256

 

Analytics Education – Facilitating a mastery of the fundamentals of analytics is what DMAIPH does best.

All across the world, companies are scrambling to hire analytics talent to optimize the big data they have in their businesses. We can empower students and their instructors with the knowledge they need to prepare for careers in analytics.

Contact DMAIPH now at analytics@dmaiph.com or connect with me directly so we can set a guest lecturer date, On-the-Job Training experience or other analytics education solution specifically tailored to your needs.

 

BI Professionals Spend 50-90% of Their Time ‘Cleaning’ Raw Data for Analytics

Sharing this…

Last year, the NYT shined a light on big data’s “janitor” problem – that data scientists and business intelligence pros spend too much time cleaning, not evaluating data. But how big of an issue is it, really?

Xplenty just wrapped a commissioned study of +200 BI pros and found that a third spend 50-90% of their time just cleaning raw data. This is one of the first reports to tie an actual # to the ETL process.

Source: bigdataanalyticsnews.com

From my days at Wells Fargo being an analyst I know how hard it was to maximize your analysis and communication time and minimize time spent finding and cleaning data. This was especially true for me as I was using more unstructured data to do things like competitive intelligence then structured data.

I see it being even more of a challenge now because the % of unstructured data in any business has exploded the past few years. Being able to mine valuable insights from unstructured data is a time consumer, at least until you get a process in place to extract and refresh the data using some kind of technology.

In addition, businesses continue to find new data points to bring into their data warehouses, dramatically increasing the amount of structured data.

What this means is a lot of analysts are spending a lot more time looking through mountains of data to figure out exactly which data to use. Its not going to get easier.

Good data gathering methodologies and nimble BI tools can help cut down on some of the workload, but in the end we just keep making data faster then we have the ability to truly process it.

There is just no replacing the human factor of someone knowledgeable about the business who can interpret the data and decide what data to use and what not to use.

Which makes life even more challenging, because once we determine what data we want to use, we still often have to take the raw data and clean it up so it is valid and so it will fit nicely into our BI tools.

3.8.2

If you have having trouble figuring out what data to use in your business and if you find yourself spending far too much time cleaning the data, perhaps DMAI can help. We have a Data Science team ready to assist your organization with just these types of challenges.